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ABSTRACT

Objective: Determine if deep learning detects sepsis earlier and more accurately than other models. To evaluate

model performance using implementation-oriented metrics that simulate clinical practice.

Materials and Methods: We trained internally and temporally validated a deep learning model (multi-output

Gaussian process and recurrent neural network [MGP–RNN]) to detect sepsis using encounters from adult hos-

pitalized patients at a large tertiary academic center. Sepsis was defined as the presence of 2 or more systemic

inflammatory response syndrome (SIRS) criteria, a blood culture order, and at least one element of end-organ

failure. The training dataset included demographics, comorbidities, vital signs, medication administrations, and

labs from October 1, 2014 to December 1, 2015, while the temporal validation dataset was from March 1, 2018

to August 31, 2018. Comparisons were made to 3 machine learning methods, random forest (RF), Cox regres-

sion (CR), and penalized logistic regression (PLR), and 3 clinical scores used to detect sepsis, SIRS, quick Se-

quential Organ Failure Assessment (qSOFA), and National Early Warning Score (NEWS). Traditional discrimina-

tion statistics such as the C-statistic as well as metrics aligned with operational implementation were assessed.

Results: The training set and internal validation included 42 979 encounters, while the temporal validation set

included 39 786 encounters. The C-statistic for predicting sepsis within 4 h of onset was 0.88 for the MGP–RNN

compared to 0.836 for RF, 0.849 for CR, 0.822 for PLR, 0.756 for SIRS, 0.619 for NEWS, and 0.481 for qSOFA.

MGP–RNN detected sepsis a median of 5 h in advance. Temporal validation assessment continued to show the

MGP–RNN outperform all 7 clinical risk score and machine learning comparisons.

Conclusions: We developed and validated a novel deep learning model to detect sepsis. Using our data elements

and feature set, our modeling approach outperformed other machine learning methods and clinical scores.

Key words: adult, sepsis/mortality, electronic health records/statistics and numerical data, machine learning, decision, support

systems, clinical, emergency service, hospital/statistics and numerical data, hospitalization/statistics and numerical data, ROC

curve, retrospective studies
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INTRODUCTION

Mortality rates in patients with untreated sepsis can exceed 30%.1,2

As a leading cause of mortality,3 sepsis represents a significant bur-

den to the patient, clinician, and healthcare system. Protocol-driven

care bundles improve clinical outcomes,4,5 but require early detec-

tion of sepsis, which remains elusive even for experienced clinicians.

In 2016, a new consensus definition (Sepsis-3) was published,

which utilizes the Sequential Organ Failure Assessment (SOFA) and

a newly developed quick Sequential Organ Failure Assessment

(qSOFA) to identify patients at risk for poor outcomes due to sep-

sis.6 The Sepsis-3 criteria have been criticized for detecting sepsis

late in the clinical course.4,7,8 The Centers for Medicare and Medic-

aid Services (CMS) continue to use an older sepsis definition based

on the presence of the systemic inflammatory response syndrome

(SIRS) for the purposes of measuring compliance with the sepsis

quality of care bundles (SEP-1 measure).4,7

Quality improvement programs implemented at individual

health systems have improved outcomes for patients with sepsis.9,10

However, overall compliance with recommended treatment remains

poor. Deep learning is a suite of novel machine learning methods

that have achieved performance on many challenging tasks.11

The present study carries out 3 analyses to better characterize

how a deep learning approach can detect sepsis early in the emer-

gency department (ED) and pre-intensive care unit (ICU) inpatient

setting. The deep learning model was specifically designed to detect

the first episode of sepsis between presentation to the ED and dis-

charge home, inpatient mortality, or transfer to an ICU. First, we

compare the performance of our previously derived deep learning

approach12,13 to clinical scores that are commonly used to identify

patients at risk of sepsis. Second, we compare the performance of

our model to previously published machine learning methods used

to predict sepsis. Third, we test how well our model, clinical scores,

and previously published machine learning methods generalize to a

planned future implementation.

MATERIALS AND METHODS

Datasets
This retrospective, single-center study analyzed electronic health re-

cord (EHR) data from a quaternary academic hospital with 43 000

inpatient and 1 million outpatient visits annually. This study is

reported as per the Transparent Reporting of a Multivariable Predic-

tion Model for Individual Prognosis or Diagnosis (TRIPOD) guide-

lines14 and was approved by the Duke University Health System

Institutional Review Board (Pro00093721, Pro00080914).

The model development cohort consisted of all inpatient admis-

sions that began in the ED between October 1, 2014 and December

1, 2015. Patients under the age of 18 were excluded. Hospital admis-

sions that did not originate in the ED (eg, direct admission; scheduled

surgery) and ED encounters that did not result in inpatient admission

were also excluded from the model development cohort. Patients who

developed sepsis within 1 h of presentation to the ED were excluded.

Encounter data began at presentation to the ED. Encounters that did

not result in sepsis ended at time of discharge, time of death, or time

of ICU transfer. Encounters that did result in sepsis ended at time of

the first sepsis episode. All data after discharge, the first sepsis epi-

sode, ICU transfer, or death were excluded from model development.

Patients who developed sepsis after transfer to an ICU were included

and treated as control cases. Curated features included structured

static variables, such as demographic, encounter, and pre-admission

comorbidity data, as well as dynamic variables, such as vital sign,

medication, and lab data. Vital sign measurements, medication

administrations, and lab collections that occurred between the en-

counter start and end times were included.

There is no gold standard for the definition of sepsis. Various

definitions of sepsis have been described in the literature which par-

tition out specific populations to meet study or epidemiological

needs. Sepsis was defined in our data by the presence of 2 or more

SIRS criteria, a blood culture order, and at least one element of end-

organ failure (Supplementary Table S1). Our definition was based

upon prior efforts by our study team.15 A similar sepsis definition

has been used for model development efforts at peer institutions that

developed at least 2 other published models, and this definition

aligns with the CMS definition.16,17

We compared our sepsis definition with Sepsis 1, Sepsis 3, and

the Centers for Disease Control (CDC) Adult Sepsis Event.17 The

Sepsis-1 and Sepsis-3 definitions were computed using SIRS and

qSOFA criteria. An order for any culture served as a proxy for clini-

cian suspicion for infection to enable the Sepsis-1 and Sepsis-3 defi-

nition to be automatically computed from the EHR without manual

chart review. The CDC Adult Sepsis Event surveillance definition is

based on the Sepsis-3 framework of suspected infection with organ

dysfunction.18 Sensitivity, specificity, positive predictive value

(PPV), and negative predictive value were calculated for each defini-

tion using CDC Adult Sepsis Events as the gold standard.

A separate temporal validation cohort was curated from the

same site. The cohort was not limited to inpatient admissions but in-

cluded all ED encounters between March 1, 2018 and August 31,

2018. The same variables, inclusion and exclusion criteria, and out-

come definition were applied. Unlike the model development cohort,

the temporal validation cohort included encounters that began in

the ED that did not result in inpatient admission.

A total of 86 variables were automatically curated19 for each co-

hort, including patient demographics, comorbidities, vital signs, medi-

cation administrations, and labs (Supplementary Table S2). In total,

the model development cohort contained over 32 million data points.

Model development
We built on prior work coupling multi-output Gaussian processes

(MGPs) and recurrent neural networks (RNNs) (hereafter called

MGP–RNN).12,13 RNNs are a form of deep learning designed to in-

gest time series data and handle sequences of variable length.20 A

core feature of any deep learning method is the ability to capture

complex relationships between input variables. RNNs can use a

patient’s complete pre-encounter and encounter data to predict an

outcome while maintaining temporal relationships.21–23 RNNs gen-

erally require evenly spaced inputs, even if the overall lengths of

encounters differ. A variety of imputation strategies have been used

to model inputs that are irregularly sampled and often missing in

EHR data,24–26 including multitask learning, which models relation-

ships between time series.27 An MGPs are a type of multitask learn-

ing that is probabilistic and maintains uncertainty about the true

value.

Dynamic features (eg, vitals; labs) are sampled every hour from

the MGP along with missingness indicator variables and fed into the

RNN. Static features are replicated every hour and fed into the

RNN. No minimum amount of data is required to generate a risk

score. At each timepoint t, the likelihood of sepsis is computed and

evaluated against whether or not the patient develops sepsis between

time t and t plus 4 h.
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The model development cohort was divided into training, test,

and internal validation subsets. The training subset contained 80%

of all encounters. The remaining encounters were evenly split be-

tween a test subset for hyperparameter selection and an internal vali-

dation subset. The internal validation subset was blinded to all

methods until final evaluation. Each model was trained on the train-

ing subset until time of sepsis. For control encounters, data until a

randomly chosen timepoint mid-encounter was used. Every model

generated a risk score each hour starting 1 h after admission.

The performance of MGP–RNN was assessed using 2 sets of

comparisons . First, we compared the performance of the MGP–

RNN to SIRS,28 National Early Warning Score (NEWS),29 and

qSOFA.6 Next, we compared the performance of the MGP–RNN to

a Lasso-penalized Cox regression (CR),30 random forest (RF),31 and

penalized logistic regression.32 Both sets of comparisons assess

global performance of methods as well as performance as time

passes following presentation to the ED.25 This analysis demon-

strates the ability of the various approaches to detect sepsis as early

in the hospital course as possible.

Temporal validation
Finally, we compared the performance of MGP–RNN against all 7

clinical scores and machine learning methods on a temporal valida-

tion cohort. The temporal validation cohort represents a planned fu-

ture implementation in an adult ED.

Table 1. Baseline characteristics of internal development and validation cohorts (90% and 10% of full data), and of temporal validation co-

hort

Baseline characteristic of cohort

Development,

n (%)

(N¼ 38 682)

Septic

development,

n (%)

(N¼ 7347)

Internal

validation,

n (%)

(N¼ 4297)

Septic internal

validation,

n (%)

(N¼ 813)

Temporal

validation,

n (%)

(N¼ 39 786)

Septic temporal

validation,

n (%)

(N¼ 2562)

Age (years), mean 6 SD 55.9 (18.7) 59.8 (17.1) 56.2 (18.6) 59.6 (17.3) 50.4 (19.5) 59.7 (17.0)

Sex male 18 203 (47.1) 4005 (54.5) 2050 (47.7) 434 (53.4) 18 272 (45.9) 1418 (55.3)

Weight (lbs), mean 6 SD 158.8 (19.7) 160.2 (19.8) 158.4 (19.4) 159.7 (19.8) 185.8 (72.1) 184.4 (60.1)

Admission source

Home/non-healthcare facility 30 063 (77.7) 5072 (69.0) 3363 (78.3) 577 (71.0) 34 848 (87.6) 1854 (72.4)

Transfer from hospital 4930 (12.7) 1498 (20.4) 534 (12.4) 147 (18.1) 2877 (7.2) 538 (21.0)

Missing/other 3689 (9.5) 777 (10.6) 400 (9.3) 89 (10.9) 2061 (5.2) 170 (6.6)

Admission type

Elective 11 854 (30.6) 571 (7.8) 1338 (31.1) 60 (7.4) 5620 (14.1) 138 (5.4)

Emergency 16 478 (42.6) 4813 (65.5) 1797 (41.8) 522 (64.2) 30 048 (75.5) 1917 (74.8)

Urgent 10 342 (26.7) 1963 (26.7) 1162 (27.0) 231 (27.8) 4118 (10.4) 507 (19.8)

Race

Black or African American 11 390 (29.4) 2329 (31.7) 1252 (29.1) 255 (31.4) 15 805 (39.7) 931 (36.3)

Caucasian/White 24 317 (62.9) 4661 (63.4) 2681 (62.4) 499 (61.4) 19 701 (49.5) 1454 (56.8)

Missing/other 2975 (7.7) 357 (4.9) 364 (8.5) 59 (7.3) 4280 (10.8) 177 (6.9)

Comorbidities

Congestive heart failure 5656 (14.6) 1576 (21.5) 627 (14.6) 175 (21.6) 3329 (8.4) 469 (18.3)

Valvular disease 5288 (13.7) 1298 (17.7) 544 (12.7) 137 (16.9) 1975 (5.0) 232 (9.1)

Peripheral vascular disease 4283 (11.1) 1016 (13.8) 474 (11.0) 119 (14.6) 1678 (4.2) 198 (7.7)

Hypertension 18 251 (47.2) 4114 (56.0) 2009 (46.8) 445 (54.7) 11 874 (29.8) 1014 (39.6)

Other neurological disorders 6725 (17.4) 1974 (26.9) 731 (17.0) 226 (27.8) 2538 (6.4) 239 (9.3)

Pulmonary circulation disorders 6917 (17.9) 1830 (24.9) 779 (18.1) 192 (23.6) 4047 (10.2) 338 (13.2)

Diabetes mellitus without

chronic complications

6071 (15.7) 1394 (19.0) 685 (15.9) 169 (20.8) 2896 (7.3) 225 (8.8)

Renal failure 6188 (16.0) 1876 (25.5) 673 (15.7) 216 (26.6) 3829 (9.6) 600 (23.4)

Solid tumor without Metastasis 4711 (12.2) 809 (11.0) 525 (12.2) 93 (11.4) 3879 (9.7) 395 (15.4)

Coagulopathy 4503 (11.6) 1588 (21.6) 497 (11.6) 173 (21.3) 1558 (3.9) 341 (13.3)

Obesity 5542 (14.3) 1203 (16.4) 598 (13.9) 133 (16.4) 3213 (8.1) 207 (8.1)

Fluid and electrolyte disorders 10 204 (26.4) 3221 (43.8) 1110 (25.8) 353 (43.4) 4855 (12.2) 668 (26.1)

Anemia 9242 (23.9) 2763 (37.6) 1055 (24.6) 309 (38.0) 3327 (8.4) 396 (15.5)

Depression 6308 (16.3) 1526 (20.8) 715 (16.6) 168 (20.7) 2721 (6.8) 174 (6.8)

Prior sepsis encounters in past year

0 36 634 (94.7) 6363 (86.6) 4103 (95.5) 727 (89.4) 38 872 (97.7) 2319 (90.5)

1 1514 (3.9) 688 (9.4) 149 (3.5) 64 (7.9) 681 (1.7) 165 (6.4)

2 or more 534 (1.4) 296 (4.0) 45 (1.0) 22 (2.7) 233 (0.6) 78 (3.0)

Overall in-hospital mortality (%) 1257 (3.2) 696 (9.5) 121 (2.8) 59 (7.3) 577 (1.5) 337 (13.2)

Overall length of stay (h), median

(25%–75%)

95 (57–168) 167 (95–318) 95 (55–168) 167 (94–315) 13 (5–90) 172 (95–342)

Overall rate of ICU admission (%) 5870 (15.2) 1530 (20.8) 646 (15.0) 166 (20.4) 4598 (11.6) 1148 (44.8)

Septic (%) 7347 (19.0) 7347 (100.0) 813 (18.9) 813 (100.0) 2562 (6.4) 2562 (100.0)

Note: For each cohort, characteristics are also broken out among the subgroup of patients who acquire sepsis.
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Statistical analysis
Evaluation metrics included area under the receiver operating char-

acteristic curve (AUC). Lastly, we fix the number of alerts allowed

per hour and report the number of sepsis cases identified early per

day. This reflects the workflow constraint of needing to limit the

number of alerts fired to front-line clinicians. Model performance is

calculated on the 10% internal validation subset and on the tempo-

ral validation cohort.

Models generate risk scores every hour and we calculate perfor-

mance using 2 approaches. To assess global performance, similar to

prior work,13,26,33,34 metrics are calculated using the maximum

score within independent 12-h windows. True positives are high-

risk scores during 12-h blocks immediately preceding a sepsis event.

False positives are high-risk scores during 12-h blocks not immedi-

ately preceding a sepsis event. To assess performance as time passes

following presentation to the ED, metrics are calculated using the

maximum score within windows ranging in size from 1-h to 12 h.

True positives are high-risk scores during a window followed by a

sepsis event within 4 h. False positives are high-risk scores during a

window not followed by a sepsis event within 4 h. All model evalua-

tions are completed without an alert ‘snooze’, a time period during

which risk scores are suppressed and not considered.

All methods were implemented using the numpy (version

1.14.0), scikit-learn (version 0.18.1), and TensorFlow (version

1.6.0) python packages.

RESULTS

In the model development cohort, there were 42 979 admissions and

sepsis developed in 8160 (19.0%) admissions. In the temporal vali-

dation cohort, there were 39 786 encounters and sepsis developed in

2562 (6.4%) encounters. Table 1 presents demographic and clinical

characteristics of the model development, internal validation, and

temporal validation cohorts. Sepsis was observed early in the hospi-

tal course. In the model development cohorts, 3100 (38%) sepsis

cases occurred between presentation to the ED and inpatient admis-

sion. Furthermore, in the model development cohorts, 791 (9.7%

overall; 25.5% of those in the ED) sepsis cases occurred within 1

h of presentation to the ED, and 372 (4.6%) sepsis cases occurred

within 1 h of inpatient admission. Supplementary Figure S1 shows

the full distribution of time of sepsis within both the model develop-

ment and temporal validation cohorts. Supplementary Table S3

illustrates the performance of our sepsis definition, Sepsis-1, and

Sepsis 3 in detecting CDC Adult Sepsis Events. Notably, our sepsis

definition had the highest PPV for identifying patient that ultimately

received 4 days of antibiotics to meet the CDC Adult Sepsis Event

definition.

MGP–RNN outperformed SIRS, qSOFA, and NEWS. Figure 1A

shows AUC and Figure 1B shows operational metrics fixing the

number of alarms per hour. To minimize alarm fatigue, a workflow

can be designed that limits the number of alerts prioritized for a cli-

nician to review per hour. Allowing 3 alarms per hour, MGP–RNN

Method AUROC (95% CI)
MGP-RNN 0.882 (0.870, 0.894)
SIRS 0.756 (0.739, 0.772)
NEWS 0.619 (0.598, 0.639)
qSOFA 0.481 (0.460, 0.503)

Avg Alarm/Hr MGP-RNN SIRS NEWS qSOFA
TP (95% CI) TP (95% CI) TP (95% CI) TP (95% CI)

1 6.86 (6.21, 7.46) 2.45 (2.12, 2.80) 1.24 (0.92, 1.55) 0.78 (0.58, 0.98)
2 9.20 (8.54, 9.90) 4.49 (3.92, 5.06) 2.21 (1.79, 2.63) 1.49 (1.23, 1.77)
3 10.53 (9.83, 11.23) 5.76 (5.18, 6.34) 3.03 (2.52, 3.52) 2.21 (1.87, 2.57)
4 11.52 (10.87, 12.22) 6.71 (6.11, 7.29) 3.69 (3.12, 4.21) 2.92 (2.50, 3.41)
5 12.34 (11.64, 13.80) 7.65 (7.04, 8.22) 4.41 (3.82, 5.00) 3.63 (3.12, 4.23)
6 13.15 (12.50, 13.80) 8.60 (7.94, 9.20) 5.16 (4.53, 5.79) 4.07 (3.56, 4.64)
7 13.69 (13.00, 14.32) 9.55 (8.83, 10.20) 5.73 (5.09, 6.43) 4.44 (3.93, 5.01)
8 14.25 (13.60, 14.86) 10.49 (9.72, 11.16) 6.40 (5.66, 7.18) 4.82 (4.31, 5.38)
9 14.76 (14.14, 15.32) 11.44 (10.60, 12.18) 7.18 (6.43, 7.98) 5.20 (4.67, 5.78)
10 15.30 (14.634, 15.89) 12.38 (11.49, 13.22) 7.96 (7.17, 8.71) 5.58 (5.04, 6.15)

A

B

17.9 sepsis cases per 24 hours
Sensitivity: TP / 17.9
PPV: TP / (24 * Avg Alarms/Hr) 

Figure 1. Results of our deep learning model compared with the clinical scores methods. (A) ROC curves for the MGP–RNN and the 3 clinical scores considered,

SIRS, NEWS, and qSOFA is shown. The accompanying table lists C-statistics with bootstrap confidence intervals. (B) The average number of sepsis cases each

day we expect to detect early before a definition for sepsis is met (ie, a more interpretable version of sensitivity), as a function of how many alarms each method

would produce each hour is shown. We limit the average alarms per hour to less than 10, as this is the operating range at which we expect to use in practice.

There were an average of 17.9 sepsis cases per 24-h period in the dataset, so sensitivity can be recovered by dividing the reported y-axis value in panel B by 17.9.

Positive predictive value at a particular threshold can be recovered by dividing the reported y-axis value by 24 times the reported x-axis value (ie, the average

number of alarms per 24-h period). MGP–RNN, multi-output Gaussian process and recurrent neural network; NEWS, national early warning score; QSOFA, quick

Sequential Organ Failure Assessment; SIRS, systemic inflammatory response syndrome.
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captured 10.5 out of 17.9 sepsis cases per day, compared to 5.76 for

SIRS, 3.03 for NEWS, and 2.21 for qSOFA.

MGP–RNN also outperformed machine learning methods used

in previously published sepsis prediction models. Figure 2A shows

AUC for each approach and Figure 2B shows operational metrics

fixing the number of alarms per hour. Allowing 3 alarms per hour,

MGP–RNN captured 10.5 out of 17.9 sepsis cases per day, com-

pared to 9.48 for CR, 8.00 for logistic regression (LR), and 10.10

for RF.

At this threshold yielding an average of 3 alarms per hour,

MGP–RNN detects sepsis a median of 5 h in advance (with 25%

and 75% quantiles of 2 and 20 h). Supplementary Figure S2 shows

the full distribution of how far in advance MGP–RNN detects sepsis

in both the internal and temporal validation cohorts. Supplementary

Figure S3 also shows the precision-recall curves for MGP–RNN ver-

sus the clinical scores and machine learning methods on the internal

cohort.

When applied to the temporal validation cohort, MGP–RNN

continues to outperform all 7 clinical risk score and machine learn-

ing comparisons. Figure 3A highlights the AUC for each approach

across internal and temporal validation cohorts; discrimination gen-

erally improves on the temporal cohort. Figure 3B and C shows

AUC and PPV as a function of hours after presentation to the ED.

Not only does MGP–RNN discriminate better than all comparisons

on a cohort of all comers to an adult ED, but MGP–RNN performs

best across metrics at almost all points during encounters. Figure 4A

and B illustrate the superior performance of MGP–RNN on a tem-

porally distinct time period. Supplementary Figure S4 also shows the

precision-recall curves for MGP–RNN versus the clinical scores and

machine learning methods on the temporal cohort.

Additional results in the Supplementary Material show model in-

terpretability, calibration, and the effect of shortening the size of the

independent 12-h time windows used for evaluation ( Supplemen-

tary Figures S5–S7).

DISCUSSION

We developed a deep learning approach to detect sepsis early and

validated the model on a cohort of inpatient admissions as well as a

temporal cohort of adults presenting to the ED. This approach uses

comprehensive data from a patient’s hospital encounter to accu-

rately detect sepsis from presentation to the ED until ICU transfer or

hospital discharge.

Consistent with prior studies16,32,35 we find that machine learn-

ing models predict sepsis more accurately than clinical scores. These

findings are clinically important, because qSOFA has been recom-

mended as the screening tool for clinicians to use to identify patients

for evaluation and potential escalation of care.36 We find that across

metrics, qSOFA performs poorly at detecting sepsis early, also

Method AUROC (95% CI) Sensitivity Specificity PPV NPV
MGP-RNN 0.882 (0.870, 0.894) 0.876 0.708 0.061 0.996
RF 0.836 (0.820, 0.852) 0.658 0.860 0.092 0.991
COX 0.849 (0.834, 0.863) 0.818 0.723 0.060 0.995
PLR 0.882 (0.805, 0.836) 0.758 0.727 0.057 0.993

Avg Alarm/Hr MGP-RNN COX RF PLR
TP (95% CI) TP (95% CI) TP (95% CI) TP (95% CI)

1 6.86 (6.21, 7.46) 6.02 (5.36, 6.55) 6.55 (6.00, 7.21) 5.58 (4.92, 6.14)
2 9.20 (8.54, 9.90) 7.90 (7.26, 8.55) 8.97 (8.31, 10.00) 6.83 (6.14, 7.45)
3 10.53 (9.83, 11.23) 9.48 (8.82, 10.12) 10.10 (9.44, 10.76) 8.00 (7.33, 8.67)
4 11.52 (10.87, 12.22) 10.38 (9.75, 11.10) 10.86 (10.22, 11.53) 9.20 (8.48, 9.87)
5 12.34 (11.64, 13.80) 11.01 (10.39, 12.00) 11.60 (10.91, 12.27) 10.20 (9.43, 10.96)
6 13.15 (12.50, 13.80) 12.08 (11.29, 12.77) 12.03 (11.42, 12.70) 11.00 (10.29, 11.71)
7 13.69 (13.00, 14.32) 12.59 (11.98, 13.37) 12.49 (11.87, 13.16) 11.75 (11.00, 12.43)
8 14.25 (13.60, 14.86) 13.44 (12.69, 14.12) 13.00 (12.31, 13.58) 12.47 (11.66, 13.19)
9 14.76 (14.14, 15.32) 14.15 (13.35, 14.76) 13.28 (12.66, 14.00) 13.00 (12.31, 13.66)
10 15.30 (14.634, 15.89) 14.61 (14.01, 15.23) 13.61 (13.02, 14.32) 13.64 (12.85, 14.24)

A

B

17.9 sepsis cases per 24 hours
Sensitivity: TP / 17.9
PPV: TP / (24 * Avg Alarms/Hr) 

Figure 2. Results of our deep learning model compared with the other machine learning models. (A) ROC curves for the MGP–RNN and the 3 other machine learn-

ing models considered, Cox regression, penalized logistic regression, and random forest is shown. The accompanying table lists C-statistics with bootstrap confi-

dence intervals. (B) The average number of sepsis cases each day we expect to detect early before a definition for sepsis is met (ie, a more interpretable version

of sensitivity), as a function of how many alarms each method would produce each hour is shown. We limit the average alarms per hour to less than 10, as this is

the operating range at which we expect to use in practice. There were an average of 17.9 sepsis cases per 24-h period in the dataset, so sensitivity can be recov-

ered by dividing the reported y-axis value in panel B by 17.9. Positive predictive value at a particular threshold can be recovered by dividing the reported y-axis

value by 24 times the reported x-axis value (ie, the average number of alarms per 24-h period). MGP–RNN, multi-output Gaussian process and recurrent neural

network; PLR, penalized logistic regression; RF, random forest.
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consistent with prior results.37 Health systems with fixed workforce

capacity looking to implement clinical decision support within an

EHR may consider investment in infrastructure to leverage machine

learning methods. Otherwise, fixing the number of alerts per hour,

we find that SIRS consistently outperforms qSOFA in detecting sep-

sis early.

Compared to previously published machine learning methods

(CR, LR, and RF), we demonstrated the superior performance of

MGP–RNN. Across AUC and operational metrics, MGP–RNN

surpassed these methods to detect sepsis within 4 h. MGP–RNN

detects more sepsis cases than other machine learning models at

every number of fixed alarms per hour (Figure 2B). This perfor-

mance gain is likely due to the coupling of the MGP with the

RNN to better impute continuous functions for all vital sign

and lab data. If a lab value is missing, the MGP will use

learned relationships from the other available continuous features

to calculate a distribution of possible values for the specific pa-

tient.

This study compared multiple previously published machine

learning methods head-to-head on the same dataset, because com-

paring models across studies is non-trivial. Prior studies use a variety

of outcome definitions, cohort definitions, model inputs, and statis-

tical methods. Most sepsis models were developed on cohorts of

ICU patients16,30,38,39 and nearly all use the publicly available

MIMIC dataset.40 Many models use sepsis ICD codes as the out-

come definition38,39,41,42 and predict sepsis at any point during an

encounter, which is not directly actionable for frontline clinicians

trying to follow SEP-1 bundle recommendations. In addition, nearly

all models use static model inputs.30,38,39,41–43 While neural net-

works have been applied to sepsis prediction,44,45 none have been

configured to use the entire time series of repeated measurements to

detect sepsis within a window of time.

We further validated MGP–RNN on a more recent cohort that

not only differs temporally but includes ED visits that do not result

in admission. In comparison to the internal validation subset, per-

formance characteristics improve for the temporal validation cohort.

We suspect the improvement occurs because sepsis occurred in

19.0% of admitted patients, but only 6.4% of patients presenting to

the ED. By including many low-risk patients, the improvement in

AUC can be expected. The temporal validation results demonstrate

the robustness of MGP–RNN within the implementation setting,

where at the time of presentation it is unknown whether a patient

will be admitted. The results further demonstrate MGP–RNN’s abil-

ity to detect sepsis better than all other methods at various points

during the hospital course. These findings laid the groundwork for

implementing MGP–RNN in the ED and a prospective evaluation is

currently underway (ClinicalTrials.gov identifier: NCT03655626).

Furthermore, our general approach can be scaled to other institu-

tions, although each new local context would likely require retrain-

ing and possibly even the development of new models.

This study has a number of limitations. First, sepsis does not

have a universally accepted definition. We adapted a definition simi-

lar to the clinical criteria outlined by CMS and this approach has po-

tential weaknesses. Our definition does not address elevated but

A

B

C

AUROC, internal and temporal validation

Prospective rolling windows, temporal cohort

Prospective rolling windows, temporal cohort

internal
temporal

Figure 3. (A) Compares the AUROC obtained from the internal validation cohort with the AUROC from the temporal validation cohort for each method, along with

bootstrap confidence intervals. (B) The AUROC as a function of hours after presentation to the ED for the temporal validation cohort for each method, limited to

the first 24 h following initial presentation is shown. (C) The PPV at 75% sensitivity for each method as a function of number of hours after presentation to the ED

is shown.
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stable vital signs or abnormal laboratory values due to chronic or-

gan dysfunction. We also did not include markers of acute respira-

tory dysfunction, a component of the CMS SEP-1 measure, due to

variable reliability of data capture within our EHR. Although multi-

ple sepsis definitions were compared in a prior analysis,15 a single

definition was selected to train all machine learning models. Future

work will have to assess model performance across multiple sepsis

definitions. Second, this is a single-site study that describes develop-

ment, internal, and temporal validation all within the same hospital.

Another limitation of our study is the low PPV at high sensitivities;

however, the low PPV is similar to other EHR-based sepsis predic-

tion models.46–48

Although the model is not tested on a geographically distinct

population, use of a temporal split cohort does demonstrate robust-

ness of model performance.49 Future work with external partners to

evaluate model performance will need to be conducted to demon-

strate geographic generalizability. Furthermore, for models intended

to be implemented within a local setting, we have previously shown

that machine learning methods developed on locally curated EHR

data can outperform models developed on national datasets.19 Fi-

nally, because MGP–RNN does not infer causal relationships, front-

line clinicians will not have insight into factors driving sepsis risk.

We do provide a variable importance graph in the Supplementary

Figure S5, but the relationship between variables and sepsis is not

necessarily causal.

In conclusion, this study couples probabilistic continuous func-

tion imputation for dynamic variables with a downstream deep

learning model to calculate risk of sepsis. MGP–RNN is comprehen-

sive, including repeated measurements of labs and vitals, as well as

all administrations of medications from the entirety of a patient’s

hospital encounter. We demonstrate that using our data elements

and feature set, our modeling approach outperformed both clinical

scores and previously published machine learning methods to detect

sepsis early within cohorts of admitted patients and patients present-

ing to the ED.
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Method AUROC (95% CI) Sensitivity Specificity PPV NPV
MGP-RNN 0.943 (0.938, 0.948) 0.868 0.902 0.082 0.999
RF 0.905 (0.896, 0.913) 0.807 0.891 0.070 0.998
COX 0.925 (0.919, 0.931) 0.810 0.897 0.074 0.998
PLR 0.897 (0.889, 0.904) 0.767 0.860 0.053 0.997
SIRS 0.748 (0.737, 0.757) 0.718 0.689 0.023 0.996
NEWS 0.690 (0.678, 0.703) 0.720 0.551 0.016 0.995
qSOFA 0.578 (0.567, 0.590) 0.409 0.744 0.016 0.992

Avg Alarm/Hr MGP-RNN COX RF PLR SIRS NEWS qSOFA
TP (95% CI) TP (95% CI) TP (95% CI) TP (95% CI) TP (95% CI) TP (95% CI) TP (95% CI)

1 6.37 (6.04, 6.68) 6.18 (5.86, 6.48) 6.16 (5.81, 6.46) 6.25 (5.95, 6.57) 1.59 (1.43, 1.75) 1.63 (1.43, 1.83) 0.65 (0.56, 0.74)
2 9.29 (8.96, 9.60) 8.98 (8.67, 9.29) 8.89 (8.56, 9.19) 8.53 (8.23, 8.81) 2.54 (2.36, 2.73) 2.44 (2.20, 2.68) 1.23 (1.07, 1.39)
3 10.80 (10.48, 11.10) 10.12 (9.79, 10.39) 9.87 (9.57, 10.14) 9.13 (8.84, 9.42) 3.49 (3.27, 3.73) 3.09 (2.85, 3.33) 1.58 (1.43, 1.75)
4 11.64 (11.40, 11.87) 10.72 (10.43, 10.97) 10.56 (10.28, 10.82) 9.61 (9.32, 9.87) 4.45 (4.16, 4.75) 3.57 (3.31, 3.84) 1.93 (1.77, 2.11)
5 12.10 (11.84, 12.33) 11.17 (10.89, 11.43) 11.06 (10.79, 11.29 ) 10.02 (9.73, 10.28) 5.10 (4.81, 5.39) 4.07 (3.79, 4.34) 2.28 (2.11, 2.47)
6 12.41 (12.18, 12.62) 11.46 (11.19, 11.72) 11.33 (11.08, 11.58 ) 10.32 (10.02, 10.57) 5.48 (5.20, 5.76) 4.49 (4.21, 4.76) 2.63 (2.45, 2.83)
7 12.62 (12.41, 12.81) 11.75 (11.49, 11.98) 11.63 (11.38, 11.85) 10.52 (10.25, 10.80) 5.86 ( 5.59, 6.13) 4.88 (4.59, 5.18) 2.98 (2.78, 3.20)
8 12.88 (12.62, 13.05) 11.93 (11.69, 12.18) 11.85 (11.61, 12.07) 10.79 (10.51, 11.10) 6.24 (5.97, 6.52) 5.22 (4.92, 5.50) 3.33 (3.11, 3.58)
9 13.00 (12.80, 13.17) 12.11 (11.87, 12.35) 11.99 (11.76, 12.20) 11.08 (10.81, 11.36) 6.62 (6.35, 6.90) 5.54 (5.23, 5.84) 3.68 (3.43, 3.93)
10 13.11 (12.93, 13.27) 12.25 (12.02, 12.49) 12.14 (11.90, 12.35) 11.31 (11.02, 11.58) 7.00 (6.73, 7.29) 5.85 (5.52, 6.17) 4.03 (3.77, 4.31)

2

A

B

ROC Curves (12 Hour Windows), Temporal Cohort 

Model Operating Alarms, Temporal Cohort 

14.4 sepsis cases per 24 hours
Sensitivity: TP / 14.4
PPV: TP / (24 * Avg Alarms/Hr) 

Figure 4. Results for the temporal validation cohort (analogous to Figures 1 and 2, which show results on the internal validation cohort.) (A) ROC curves and (B)

the operating alarms are shown. There were an average of 14.4 sepsis cases per 24-h period in the dataset, so sensitivity can be recovered by dividing the

reported y-axis value in panel B by 14.4. Positive predictive value at a particular threshold can be recovered by dividing the reported y-axis value by 24 times the

reported x-axis value (ie, the average number of alarms per 24-h period).
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